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We discuss the problem of global existence and uniqueness of Bohmian mechan- 
ics, focusing on the role played by the quantum probability flux. The relation to 
the self-adjointness of the Hamiltonian is alluded to. 

Bohmian mechanics is a non-Newtonian theory for the motion of  
point particles which is Galilean and time-reversal invariant. The state of  
an N-particle system is given by the configuration Q - - ( Q 1  . . . . .  QN) 

E3N and the wave function ~, on configuration space ~3N. Here Qk ~ E3 is 
the position of  the kth particle. On the subset of  ~3N where ff ~ 0 and 
differentiahle, ~ induces a velocity field v ~' (Vl~, . . . ,  v~) via 

v~(q) h Im Vk~k(q) h ( r 1 6 2  -- r , 
= m--kk ~k(q) 2imk -~-g~ ) tq )  

(1) 

determining the motion of  particles with masses m l , . . . ,  mN. The time 
evolution of  the state (Q~, ~'t) is given by a first-order differential equation 
for the configuration Q~, 

-,~__,_~t = v~,,(Q, ) (2) 
dt 
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and by Schr6dinger's equation for the wave function ~kt 

ihO~bt(q) I ~ h2 1 ~t - - k = l  2m~ A~ + V(q) ~,(q) (3) 

It is by now well established that Bohmian mechanics resolves all 
problems associated with the measurement problem in nonrelativistic quan- 
tum mechanics (Bohm, 1952; Bohm and Hiley, 1992; Bell, 1987; Diirr et 
al., 1992). It accounts for quantum randomness, absolute uncertainty, the 
concept of the wave function of a subsystem, collapse of the wave function, 
and familiar (macroscopic) reality. For a thorough analysis of the physics 
entailed by Bohmian mechanics see (Bohm and Hiley, 1992; Diirr et al., 
1992; Daumer et al., 1993). 

We report here on our work on the problem of the existence and 
uniqueness of Bohmian mechanics (Berndl et al., 1993). To establish global 
existence and uniqueness means: given Q0 and ~k0 at some "initial" time to 
(to = 0), show unique existence of solutions of (2) for Qt and of (3) for ~t 
on arbitrary finite time intervals such that Q,o = Qo and ~to = ~o. 

In orthodox quantum theory the time evolution of the state ~bt is given 
by a one-parameter unitary group Ut on a Hilbert space ~f~. Ut is generated 
by a self-adjoint operator H, which on smooth wave functions in 

= L2(~ 3N) is given by 

H = - k = l  2rag Ak + V 

i.e., Schr6dinger's equation is regarded as the "generator equation" for U~. 
Hence the "problem of the existence of dynamics" is reduced to showing 
that the relevant Hamiltonian H (given by the particular choice of the 
potential V) is self-adjoint. This has been done in great generality, indepen- 
dent of the number of particles and for a large class of potentials, including 
singular potentials such as the Coulomb potential, which is of primary 
physical interest. 5 However, these highly developed rigorous results con- 
cerning the unitarity of the time evolution have a curious status within 
orthodox quantum theory: that theory is mainly concerned with measure- 
ments, i.e., with situations where the unitary evolution is interrupted by the 
dubious procedure of "collapse." 

In Bohmian mechanics we have not only Schr6dinger's equation (3) to 
consider, but also the differential equation (2) for the motion of the 
particles. Local existence and uniqueness of Bohmian trajectories is guaran- 

5We remark here that in the case of systems with more than four particles, the "analogous" 
problem in Newtonian mechanics, namely gravitational interaction, has not been solved yet. 
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teed only if the velocity field v ~' is continuously differentiable. Therefore we 
need more regularity properties than merely requiting that the wave 
function 0 be in L2(~3N). For a large class of potentials, including 
Coulomb-type potentials, the regularity properties we wish to demand are 
satisfied on the set of C~-vectors of the self-adjoint Hamiltonian H, a set 
which is a dense [in L Z(~3N)] and invariant (under e-im/h for t e ~) subset 
of the domain of H. 

Global existence for the solution of (2) is more delicate. It may be 
obstructed by the points where the velocity field (1) is not defined. This is 
the case (i) at X ,  the set of nodes of ~: sV ,= {(q, t )~R3N • ~:  Or(q) = 0} 
and (ii) at the points where ~ is not differentiable. For a large class of 
potentials, including those of Coulomb type, the latter set is contained in 
the set 5~ of singularities of the potential for wave functions which are 
Ca-vectors of H. Furthermore, the solution of (2) may explode, i.e., it may 
reach infinity in a finite amount of time. 

The problem we have addressed can now be stated as follows: Suppose 
that at some arbitrary "initial time" (t = 0) the N-particle configuration Q0 
lies in the complement of the nodal set of 00 and of 5C Does the 
configuration develop in a finite amount of time into a singular point, i.e., 
a point in sV or 50 x E, or does it reach infinity in finite time? We shall 
argue that the answer is negative for "typical" Qo and "sufficiently regular" 
00. By "typicality" we mean that this holds for almost all Qo with respect 
to p~,o, the probability measure on configuration space E3N with the density 
[00 [2 "Sufficient regularity" pertains to a set of wave functions ~'o which is 
dense in L2(E 3N) and invariant under e-itn/h for t e a  such as, for example, 
the set of C~ of the self-adjoint Hamiltonian H. 

We first give a simple intuitive argument as to why nodes are typically 
missed by the particles. A "generic" wave function 0 is complex: it has 
"independent" real and imaginary parts. Therefore the equation 0,(q) = 0 
[~-Re 0 , ( q ) =  0, Im 0 t (q )=  0] will "genetically" require (q, t) to lie in a 
manifold of codimension 2 in configuration-space-time R 3u x R, like, e.g., 
isolated points in (1 + 1)-dimensional space-time. Then it is reasonable to 
expect that most likely the trajectory will miss this small set, or in other 
words: the set of exceptional initial positions which develop into nodes 
should have (p~,o.) measure zero. 

Note that this "argument" applied to N spin-l/2 particles, i.e., "to the 
real world situation," shows that a "genetic" N-particle spinor wave 
function has no zeros: Since it consists of 2 u+~ real components, the 2 N+I 
equations for a node overdetermine grossly the 3N variables. 6 In the 
following we shall discuss the "worst case" of spinless particles. 

6"Spin" can easily be incorporated in Bohmian mechanics by a straightforward generalization 
to spinor wave functions. 
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We use notions of sufficient regularity and typicality which are time 
independent because Bohmian mechanics, as given by equations (2) and 
(3), is time-translation invariant. Note in particular that therefore the set of 
sufficiently regular wave functions depends upon the Hamiltonian H. Given 
the existence of the dynamics for configurations Qt, the result we wish to 
establish here, the notion of typicality is time independent by equivariance 
(Diirr et al., 1992): 

po = 10ol 2 p ,  = 10,12 for all t~R 

where fit denotes the probability density on configuration space •3N, which 
is the image density of Po under Qt- This follows from comparing the 
continuity equation for an ensemble density Pt 

N 

~Pt(q---~) + ~ Vk " [v~'(q)pt(q)] = 0 (4) 
Ot k= 1 

with the quantum "continuity equation" 

Oltfit(q)f2 w 
~ + Z Vk'j~'(q) = 0 (5) 

k = l  

and noting that the quantum "probability current" fl' = (j~ . . . .  , j~) is 
given by 

We would like to stress the conceptual difference between equations 
(4) and (5). Equation (5) is an identity for every @t which satisfies 
Schr6dinger's equation, but, without having established global existence of 
the particle motion, it is not a continuity equation in the classical sense-- 
despite its name. By establishing global existence, we simultaneously show 
that the quantum "probability current" jr is indeed a classical probability 
current, propagating the ensemble density [~, [2 along the integral curves of 
the velocity field v ~ 

The continuity equation (4), even without global existence of trajecto- 
ries Q,, holds "locally" on the complement of the nodal set sV" and the set 
of singularities 6e x N, with p, suitably interpreted. This will be used in the 
following argument for global existence. 

Recall that a probability current Jr (q)=Pt (q)v t (q )  of an ensemble 
density p, along a vector field v, has the following probabilistic significance: 

]J,(q) �9 n[ da with the flux art(q):=(Jr(q), Pt(q)) 
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is the expected number of  crossings, by the random trajectory defined by p 
and v and hence by J, of  the 3N-dimensional hypersurface element da in 
configuration-space-time N3Nx N at a point (q, t), where n denotes the 
local normal vector. [(J �9 n) do" is the expected number of  signed crossings of 
the surface element do".] 

Given then an arbitrary hypersurface 3-- in configuration-space-time 
N3N x ~, we have (by linearity of  the expectation) that 

l" 
J j  ]J~(q) "ntdo" = expected total number of crossings of  Y- 

Now we wish to apply this insight to establish global existence for the 
particle motion in Bohmian mechanics, i.e., to argue that none of  the 
singular points of  v'~, are reached in finite time. Roughly speaking, the idea 
is this: " I f  there is no flux into the singular points, the singular points are 
unproblematic." The set of  singular points in configuration-space-time 
R 3N x ~ is formed by ~2 w(5 e x ~). We introduce j f f ' ,=  jff \ (5~ x ~). (On 
X ' ,  J~', is continuous, which is needed below.) However, v ~, is not defined 
on ~4r' and on 5e. This may be taken care of  by considering for E > 0, 6 > 0 
an e-neighborhood (in N3N x N) of ~ r '  and a &neighborhood (in N3~v) of  
6e: 

~ " : =  U {(q, t) eN3N x N: I(q, t) - z  I --<- r 

5~s"= U {q~3N: lq - -Y[<6}  
y~,~ 

To treat the problem of possible explosion, we introduce an increasing 
sequence of  compact sets (~fft)z~ ~ exhausting R3N: ~ 7 ~3N. Then the set 
of "good" points is ~,.~j.'=(~f~ x ~) \ (~A/"~(5  e~ x R)). Let the configura- 
tion Q start in fg,.~.t at t = 0 [i.e., (Q0, 0) ~ fr with a density [~0] 2. We 
construct the trajectory Q, by integrating v ~ until Q, hits the boundary of  
fr at which time the configuration is put into a cemetary, i.e., it is taken 
out of  the ensemble. We now infe r - -by  comparing the continuity equation 
(4) for this process with (5) on fr the density of hittings of  the 
surface 9~4,,~. t at the point (q, t) is bounded by ]jO,(q) "n[ (Berndl et al., 
1993). But the probability for a first hitting of  Ofg,,~.z within a time interval 
[0, T] is bounded by the expected total number of  hittings of 
J-.-=0ff,.~jc~(E 3N x [0, T]). Hence for all E, 6, and h 

Probability of  reaching a node, a singularity or infinity within [0, T] 

<- ~ IJO,(q) �9 n [da < N + S + I (6) 
Jg- 
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where 

N , =  | Is ,(q) . n I 
d~ 

S := ~ IJq"(q) �9 n Ida  
J< 0 ~  a x [0, T])r~-  

I.'= f [JO'(q) �9 n [da 
3( 8:,~/x [0, T]) c~9- 

Under the condition that the integrals N, S, and I vanish in the limit c ~ 0, 
6 --* 0, and l ~ ~ ,  Bohmian mechanics exists globally. We now explain why 
this should be so. 

1. The "nodal integral" N: As ~-~0, there are two reasons why N 
should vanish: (i) Jq', is zero at the nodes, and hence is small on 8JV '~. (ii) 
8 Y ' ~  0 X '  as E ~ 0 and, as argued above, one expects that X and hence 
also X '  has codimension 2. Thus 0W '~ should have small surface area. 

2. The "singularity integral" S: This term should vanish as 6 ~ 0 since 
the set 5~ of singular points of the potential has codimension greater than 
1 for the class of potentials that are normally considered, for example, the 
Coulomb pair interaction of the atomic Hamiltonian. 

3. The "infinity integral" I should tend to zero as l ~ o% since @t(q) 
and hence J~',(q) should rapidly go to 0 as ]ql ~ ~ -  

To make argument 1 rigorous, very mild control on the surface area of 
the boundary of the nodal set Y would suffice. In fact we would need only 
that the boundary of JV" be a countable union of pieces with finite area. As 
natural as this may appear [wave functions having pathological nodal 
sets--for  example, of (uncountably) infinite area--should  be pathological 
as well], it is nonetheless even unclear whether this condition is valid for a 
suitable class of wave functions. However, this problem can be bypassed: 
We show (Berndl et al., 1993) how, by a more delicate analysis, the nodal 
integral can be controlled along the lines suggested by 1. 

To make the arguments in 2 and 3 rigorous, one needs regularity and 
boundary conditions on ~b which are satisfied by those C~ of the 
self-adjoint Hamiltonian H having "finite integrated kinetic energy," a 
condition automatically satisfied for several large classes of potentials 
V--remarkably,  precisely the classes defined by the standard conditions 
for the self-adjointness of the Hamiltonian (Berndl et al., 1993), i.e., for the 
existence of the wave function dynamics alone. For details, as well as some 
simple illuminating examples and a more thorough discussion of this 
connection between the global existence of the particle motion and the 
self-adjointness of the Hamiltonian, see Berndl et al. (1993). 
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